If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x-63=0
a = 4; b = 16; c = -63;
Δ = b2-4ac
Δ = 162-4·4·(-63)
Δ = 1264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1264}=\sqrt{16*79}=\sqrt{16}*\sqrt{79}=4\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{79}}{2*4}=\frac{-16-4\sqrt{79}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{79}}{2*4}=\frac{-16+4\sqrt{79}}{8} $
| 48x^2+68x+24=0 | | n2=7n+18 | | 3x^2+16x-64=-1-x^2 | | 2.5=a/0.5 | | 12x2-9=0 | | 51+4x+11=90 | | -9c-8c=16 | | 5x-1+8x-14=180 | | v=45+12+.2v | | 4x+12+30=90 | | -7x+3=-x+9 | | 6x-2+8+6x=90 | | 6(1-5v)+7v=-178 | | (2x÷5)=105 | | 5x-2+8+6x=90 | | 5n+3n-2n=32 | | 2x^2+24x+79=0 | | 3x+3(x-2)=3(x+6) | | x+4-9=20 | | 7x-2=-6x-15 | | 3x=3(x-2)=3(x+6) | | 5-7x=7x-93 | | 3-6x=15-3x | | 5(x+4)+12=2(x-3-1) | | 7x+4=6x+14 | | -3x+10=-2x+9 | | 5b=3b+6 | | -2(x-4)^2+5=4 | | 3/4+-9p=-3/5 | | -2+6=-m | | 32-5q=-67 | | 11-4a=3a-27 |